
Tin-Yu Wu
1
, Wei-Tsong Lee

2
, Chien-Yu Duan

2

Department of Computer Science and Information Engineering, National Ilan University, Taiwan, R.O.C.
1

Department of Electrical Engineering, Tamkang University, Taiwan, R.O.C.
2

tyw@niu.yku.edu.tw, wtlee@mail.tku.edu.tw, jason84195@hotmail.com

Abstract- This paper proposes to add the multithreaded Graphic

Processing Units (GPUs) to some virtual machines (VMs) in the

existing cloud-based VM groups. To handle the multidimensional or

multithreaded computing that a CPU cannot process quickly by a

GPU that has hundreds of Arithmetic Logic Units (ALUs), and to

regulate the time for initiating physical servers by real-time thermal

migration, our proposed scheme can enhance the system

performance and reduce the energy consumption of long-term

computing. Four major techniques in this paper include: (1) GPU

virtualization, (2) Hypervisor for GPU, (3) Thermal migration

implementation, and (4) Estimation of multithreaded tasks. In no

matter quantum mechanics, astronomy, fluid mechanics, or

atmospheric simulation and prediction, a GPU suits not only parallel

multithreaded computing for its tens of times performance than a

CPU, but also multidimensional array operations for its excellent

efficiency. Therefore, how to distribute the computing performance

of CPUs and GPUs appropriately becomes a significant issue. In

general cloud computing applications, it is rarely seen that GPUs can

outperform CPUs. Furthermore, for groups of virtual servers, many

tasks actually can be completed by CPUs without the support of

GPUs. Thus, it is a waste of resources to implement GPUs to all

physical servers. For this reason, by integrating with the migration

characteristic of VMs, our proposed scheme can estimate whether to

compute tasks by physical machines with GPUs or not. In estimating

tasks, we use Amdahl’s law to estimate the overall performance

include communication delays, Synchronization over head and me

possible additional burden.

Keywords: Virtual Machine (VM), Multithreading, GPU, CUDA,
Mapreduce

I. INTRODUCTION

In traditional computer science, computers processed

tasks mainly by Central Processing Units (CPUs). However,

the development of CPU has recently encountered bottlenecks

because the computation speed-up of single-core processors

may result in overheating and power consumption problems.

Therefore, in place of single-core processors, multi-core

processors are gradually used for parallel computing to

enhance computer performance.

Parallel computing in the early days was usually

executed by several computers and processed by traditional

CPUs. Thus, organizations those needed to process large

amounts of data established large-scale multicomputer

systems and exchanged data through Message Passing

Interface (MPI). In such a kind of multicomputer environment,

every computer is a computational node, which has its own

CPU, memory and networking interface. Thus, a

multicomputer system usually transforms a parallel program

into single program multiple data (SPMD) for every computer

in the system to operate the same program but process

different data.

In the past, display cards were defined as the auxiliary

to CPUs to process image and graph related tasks. Later, GPU

was presented to reduce display cards' dependence and

occupancy of CPUs. Although the number of computing units

on GPUs was not large previously, the computing ability of

display cards has been enhanced recently: not only the

improvements of computing clock, but also the increasing

number of GPUs on display cards, which enhances the

floating-point operations per second. Instead of being

designed to finish heavy computing tasks within a limited

number, GPUs are expected to process large amounts of data

and tasks by parallel computing to improve the system

performance. Because a large number of GPUs are suitable

for parallel computing, many supercomputers in the word

have started to use GPUs to support CPUs for a great deal of

complicated computing tasks.

Since the future of computers keep stepping into cloud

computing, we propose to add the multithreaded GPUs to

some VMs in the existing cloud-based VM groups. To handle

the multidimensional array operations or multithreaded

computing that a CPU cannot process quickly by a GPU that

has hundreds of ALUs, and to regulate the time for initiating

physical servers by real-time thermal migration, our proposed

scheme can estimate whether to compute tasks by GPUs or

not, enhance the system performance, and reduce the energy

consumption of long-term computing.

II. RELATED WORKS

2.1 CPU/GPU Collaborative Computing

In modern computer science, traditional CPU

computing has reached a bottleneck while high performance

computing systems are experiencing a revolution, in which

novel architectures are presented one after another and the

combination of multi-core microprocessor and GPU is one of

the highest potential and prospective method.

GPU (Graphics Processing Unit) was first presented by

NVidia in 1999[1]. With the evolution of semiconductor

industry, the growth of GPU has been exceeding Moore's Law

Enhancing Cloud-based Servers by GPU/CPU

Virtualization Management

mailto:wtlee%7d@mail.tku.edu.tw

and reached more than 500 gigaflops of double-precision

floating point operations. As for researches about GPGPU

(General-Purpose computation on GPU), papers [2-5] have

specified the history, architecture, software environment and

several cases of GPU.

Because of its powerful computational capabilities, high

cost performance and high performance but low power

consumption, GPU has received great attention in such an

eco-friendly era. In addition to traditional graphical

computing, GPU has been greatly applied to general-purpose

computing and thus formed GPGPU or General-purpose

computing on graphics processing units (GP²U). Due to its

excellent general-purpose computational capabilities, GPU

has been regarded as the future of computer science since

2003 [2].

CPU and GPU are designed with absolutely different

goals. The design concept of CPU is to execute instructions

and operations quickly with low delay and to use a great deal

of IC for control and temporary storage. On the other hand,

GPU is designed for graphical computing, in which great

amounts of IC are used as ALUs for high intensity computing.

Therefore, by utilizing CPU/GPU collaborative computing,

we can use CPU for control and buffer and use GPU for

processing a great deal of computing tasks.

In the scope of CPU/GPU collaborative computing,

CUDA (Compute Unified Device Architecture)[5] presented

by NVidia is currently the leading technique of GPGPU. The

CUDA is a C-language development environment, in which

tasks are computed by GPUs after NVidia GeForce 8 together

with Quadro GPU. Commands in either CUDA C-language or

OpenCL will be compiled into PTX code by driver programs

for the display core to compute.

The latest CUDA-x86 compilers can support traditional

multi-core CPU architecture and execute all parallel programs

written by CUDA. Instead of outperforming CPU in all

computing aspects, GPU only surpasses CPU in matrix

computing and parallel computing, which are still rarely seen

in the present program structure. Thus, when a VM of a

physical server without GPU executes parallel computing, the

system will estimate the computing cost of GPU servers.

Supposing the computing amount is not large, we use CPU

for parallel computing. On the contrary, we will use GPU for

a great deal of computing amount.

2.2 GPU Virtualization

When cloud computing becomes the future of computers,

how to virtualizes all computer interfaces and optimize the

computer performance is the goal for all cloud service

providers. While GPU computing has been integrated into

new computer structure, traditional virtual structures will be

challenged. VMware, the leading company in the

virtualization, has presented some concepts about GPU

virtualization in [6]. Like traditional virtualization, physical

GPU is cut into several virtual GPUs and GPU resource is

managed by a resource manager, which is similar to a VM

monitor. However, to distribute GPU resource to all VMs

equally is not exactly the best method, especially when the

VMs are greatly different. For the diversification of server

client mode after virtualization, we propose a novel

distribution method of GPU virtualization together with

thermal migration to achieve reasonable application of GPU.

2.3 MapReduce

[7] proposes to use GPU based on a computing concept

similar to Hadoop. According to MapReduce, the program is

first sent to a master node. In the Map phase, the proposed

scheme divides the program into suitable sizes, distributes the

tasks equally to worker nodes, and tracks the tasks. After the

nodes complete the tasks, the worker nodes collect the results

by Reduce, which can greatly decrease the computing time.

But, one great restriction of this scheme is that only when the

computers at all ends belong to the same specification and the

type specification of CPU and GPU are the same, can the

scheme find out α, the performance ratio of a GPU map task

execution to a CPU map task execution. In addition, this

scheme does not consider the loading conditions of all worker

nodes in the virtual environment and the time difference may

occur to parallel computing under different loading conditions,

which causes further delay in Reduce.

III. ENHANCING CLOUD-BASED VIRTUAL

SERVERS BY GPU PARALLEL COMPUTING

3.1 Integrating GPU into Cloud Server Virtualization

In the virtualization architecture, because GPU is one of

the necessities for future computers, GPU virtualization is

inevitable. According to the basic architecture of VMs and the

initial ideas about GPU virtualization presented by VMware,

GPU is virtualized, just like CPU and other computer devices,

for resource management. As shown in Figure 1, each VM

has a pass-through GPU to form a channel to stride the

resource manager for GPU utilization and to establish GPU

driver for Apps on all kinds of VMs. Moreover, there is

another channel from the resource manager to Emulation for

GPU management.

App App

API

GPU Driver

Pass-through GPU

Emulation

App App

API

GPU Driver

Pass-through GPU

Emulation

Physical GPU

Resource Manager

Virtual machine Virtual machine

Figure 1 GPU virtualization of VMware (Source: VMware)

Nevertheless, GPU is not suitable for public sharing

because large number of data transmissions will influence the

efficiency of GPU computing. Furthermore, in general cloud

computing applications, only high-performance and

multithreaded computing, including real-time image

processing, atmospheric simulation and prediction,

astrophysics, quantum mechanics, fluid mechanics, etc., can

make good use of GPU computing.

General server group GPU coprocessors server group

Cloud server group

Figure 2. Cloud Server Group

Therefore, we propose to add GPUs to a cloud server

group and classify the servers into two subgroups: general

server group that occupy the great majority of the group, and

GPU coprocessors server group, as displayed in Figure 2. As

for GPU coprocessors server group, we suggest that a VM

occupies a GPU at one time to complete one single task

within the minimum time. Figure 3 shows that only one VM

controls one GPU at one time. When a VM needs a GPU, the

VM monitor gives the GPU usage right to the VM and

completes the computing task by MapReduce within the

minimum time. Finally, the GPU usage right will be returned

to the VM hypervisor.

The virtual machine operating environment

CPU I/O
Network
interface

Memory

Applic
ation

Applic
ation

Applic
ation

Applic
ation

Virtual MachineVirtual Machine

The virtual machine operating
system

The virtual machine operating
system

GPU

The virtual machine operating
system

Virtual Machine

Application

C
hannel

C
ontrol signals

Figure 3 Architecture of GPU Virtualization

By making an improvement of the method presented in

[8], our proposed scheme aims to achieve balance control but

the control node does not take charge of all data transmissions

for fear of causing heavy burdens. In our opinion, the balance

control node is only responsible for resource management

while all work nodes have to return CPU loading, GPU

loading and the current user list to the balance control node.

Our task scheduling is displayed in Figure 4. First, the

client sends the task to the cloud server and the master node

estimates the task. Second, when the program asks for more

CPU/GPU resource, the master node cuts the task into small

tasks of the same size. By referring to [7], we can find out the

performance ratio of a GPU map task execution to a CPU

map task execution, α. Let

 (1)

Then we can get the number of small tasks. Third,

according to the quantity of tasks, the program requests the

computing resource from the balance control node, which

distributes obtainable resource to available work nodes in the

following step. Based on the available resource, the master

node determines the optimal task allocation and maps them to

each work node for computation. Finally, the master node

reduces the calculation results and informs the control node

the completion of the task to release computing resource.

Balance control server

Master node

Task

Work node 1

Work node 3

Work node 2

Work node N

.

.

.

.

.

.

1. Cut the big Task into small tasks of the same size

CPU GPU

2. run the small task on a single CPU/GPU ALU and Calculate α

small
Task

small
Task

Master Node

3 send the request and ask
for the Computing resources

Each work node
Return they state

information

4 According to the requirement
allocate work nodes

5 Calculate Optimal task allocation
and MAP them to each work nodes

small
Task

small
Task

small
Task

small
Task

Figure 4 Task Scheduling

3.2 Related Parameters

Related parameters are divided into two kinds. The first

is the loading condition of the server, which is sent to the

control node as the index for the master node to request

computing resource. We define CPU load as:

 (2)

and GPU load as:

 (3)

The resource for the control node to distribute is 90%

and 0%< <100%.

The second kind of parameters are related to small task

blocks and total calculation time. Let

 α be the CPU/GPU calculate time rate.

 be the number of Assigned CPU cores.

 be the number of Assigned CPU cores.

 t be the time for 1 GPU core calculate a task.

 be the task computation time.

According to Amdahl‘s law, we know that

 (4)

where s denotes the part that is not improved in the

system, p refers to the improved part in the system, and N

means the enhance ratio. Next, we will integrate our defined

parameters with the formula. Because our assumed scenario is

a cloud-based parallel architecture, in which extra overhead

must be computed, the formula is revised into:

 (5)

IV. PERFORMANCE SIMULATION AND ANALYSIS

According to the architecture presented in the previous

section, we made the following simulation and analysis:

Assume that the specifications of the cloud servers are the

same and the operational speed of a single CPU core is five

times faster than a single GPU core. Each cloud server has

four CPU cores and two CPU devices (2*128cores). The

considered overhead include the time for data transmissions

and MapReduce. Five kinds of program types are taken into

consideration:

1. 1% and 99%

2. 5% and 95%

3. 10% and 90%

4. 25% and 75%

5. 50% and 50%

Suppose that all servers are free.

Figure 5 reveals the parallel system gain according to

traditional computer based concept. In our simulation, the

system gain reaches the maximum when the number of nodes

is unit digit. Also, the more proportion the parallelizable code

occupies the program, the better the efficiency will be. When

the parallelizable code occupies 99% of the program, the

system gain reaches 89 times when there are 3 nodes.

However, when the parallelizable code occupies 90% of the

program, the system gain reduces quickly and the maximal

system gain is 19.5 times when the number of nodes is 3 or 4.

When the parallelizable code occupies only 50% of the

program, the gain is only 2 times at most.

Figure 5 Theoretical gain of servers

Next, without considering the execution time for

collaborative computing, we analyzed the transmission time

and the execution time for small chunks. Supposing the

execution time for a 10-megabyte serial code on a CPU is 15

seconds, 1% of the program, and 990-megabyte parallelizable

code occupies the rest of the program. It takes 1485 seconds

to compute the task by CPUs only and 29 seconds by two

GPUs. But, it takes only 26.9 seconds to complete the task by

4 CPUs and 2CPUs.

Table 1 Total Execution Time (1% serial code)

 serial code Total time

1 CPU 15s 1485s 1500s

2 GPU 75s 29.01s 104.01s

1 node 15s 26.9s 41.9s

2 nodes 15s 13.45s 28.45s

3 nodes 15s 8.967s 23.967s

In the same way, by using one single CPU to using 1-3

nodes, we estimate the execution time of different program

types, as displayed in Figure 6.

Figure 6 shows that to use CPUs only for computing, all

kinds of program types can be completed within 1500s. If the

program code occupies 99%, the task can be completed in 44

seconds and even 20 seconds with the support of more GPUs.

However, the more proportion un-parallelized computing

occupies, the less improvements parallel computing can make.

Theoretically speaking, with the support of more GPUs, the

execution time of the parallelizable code should be reduced to

0. But, more GPUs and more nodes in fact will result in more

overhead.

In our proposed scheme, because the server's loading

condition is considered, few nodes cannot offer enough GPUs

for parallel support (compared with the above-mentioned

situation that all servers are free). The maximal gain is

obtained when there are 15 nodes. But, more nodes will

decrease the performance due to synchronization and

transmission. Moreover, when the server is near end, our

simulation occupies approximately 2 seconds for

transmission.

Figure 6 Execution time of different program types in GPU

parallel computing

Figure 7 Server Gain under Load Condition

V. CONCLUSION AND FUTURE OBJECTIVE

This paper proposed a scheme to integrate GPU with

cloud computing for users to utilize high-performance but

low-cost GPU resource without building devices by

themselves. However, the biggest limitation of GPU

computing is the market share of parallel computing, which

needs to be popularized by future parallel computing service

providers and developed/adopted by numerous application

developers. Moreover, the transmission amount of the

network and the internal bus in the computer is another

bottleneck of parallel computing. Supposing the transmission

amount can be further enhanced, a great deal of overhead will

be reduced and the maximal gain will appear when much

more nodes are utilized for collaborative computing.

ACKNOWLEDGEMENT

This study was supported by the National Science Council,

Taiwan, under grant no. NSC 100-2219-E-032-001.

REFERENCES

[1] Macedonia, M., ‘The GPU enters computing's mainstream,” IEEE
Computer Society, 2003, 36(10):106-108

[2] Owens, J.D. , Houston, M. , Luebke, D., et al ,“GPU
Computing,”Proceedings of the IEEE, 96(5) : 879 - 899

[3] NVIDIA, NVIDIA CUDA Programming
Guide,2010;http://developer.download.nvidia.com/compute/cuda/3_1/to
olkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

[4] Khronos, The OpenCL Specification, 2011;
http://www.khronos.org/opencl/

[5] E. Lindholm et al., ‘‘NVIDIA Tesla: A UnifiedGraphics and Computing
Architecture,’’IEEE Micro, vol. 28, no. 2, 2008, pp. 39-55.

[6] Micah Dowty ,Jeremy Sugerman ,” GPU virtualization on VMware's
hosted I/O architecture,” ACM SIGOPS Operating Systems
Review,2009

[7] Shirahata, K. ,Sato, H. , Matsuoka, S. ,” Hybrid Map Task Scheduling
for GPU-basedHeterogeneous Clusters,”IEEE International Conference
on Cloud Computing Technology and Science,2010

[8] Wenwu Zhu , Chong Luo , Jianfeng Wang ,Shipeng Li ,“Multimedia
Cloud Computing”

[9] Daga, M. ; Aji, A.M. ; Wu-chun Feng ; “On the Efficacy of a Fused
CPU+GPU Processor (or APU) for Parallel Computing”, Application
Accelerators in High-Performance Computing (SAAHPC), 2011
Symposium on

[10] Nickolls, J. ; Dally, W.J. ;”THE GPU COMPUTING ERA”, Micro,
IEEE,2010

