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Abstract- This paper proposes to add the multithreaded Graphic 

Processing Units (GPUs) to some virtual machines (VMs) in the 

existing cloud-based VM groups. To handle the multidimensional or 

multithreaded computing that a CPU cannot process quickly by a 

GPU that has hundreds of Arithmetic Logic Units (ALUs), and to 

regulate the time for initiating physical servers by real-time thermal 

migration, our proposed scheme can enhance the system 

performance and reduce the energy consumption of long-term 

computing. Four major techniques in this paper include: (1) GPU 

virtualization, (2) Hypervisor for GPU, (3) Thermal migration 

implementation, and (4) Estimation of multithreaded tasks. In no 

matter quantum mechanics, astronomy, fluid mechanics, or 

atmospheric simulation and prediction, a GPU suits not only parallel 

multithreaded computing for its tens of times performance than a 

CPU, but also multidimensional array operations for its excellent 

efficiency. Therefore, how to distribute the computing performance 

of CPUs and GPUs appropriately becomes a significant issue. In 

general cloud computing applications, it is rarely seen that GPUs can 

outperform CPUs. Furthermore, for groups of virtual servers, many 

tasks actually can be completed by CPUs without the support of 

GPUs. Thus, it is a waste of resources to implement GPUs to all 

physical servers. For this reason, by integrating with the migration 

characteristic of VMs, our proposed scheme can estimate whether to 

compute tasks by physical machines with GPUs or not. In estimating 

tasks, we use Amdahl’s law to estimate the overall performance 

include communication delays, Synchronization over head and me 

possible additional burden. 
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I. INTRODUCTION 

In traditional computer science, computers processed 

tasks mainly by Central Processing Units (CPUs). However, 

the development of CPU has recently encountered bottlenecks 

because the computation speed-up of single-core processors 

may result in overheating and power consumption problems. 

Therefore, in place of single-core processors, multi-core 

processors are gradually used for parallel computing to 

enhance computer performance. 

Parallel computing in the early days was usually 

executed by several computers and processed by traditional 

CPUs. Thus, organizations those needed to process large 

amounts of data established large-scale multicomputer 

systems and exchanged data through Message Passing 

Interface (MPI). In such a kind of multicomputer environment, 

every computer is a computational node, which has its own 

CPU, memory and networking interface. Thus, a 

multicomputer system usually transforms a parallel program 

into single program multiple data (SPMD) for every computer 

in the system to operate the same program but process 

different data. 

In the past, display cards were defined as the auxiliary 

to CPUs to process image and graph related tasks. Later, GPU 

was presented to reduce display cards' dependence and 

occupancy of CPUs. Although the number of computing units 

on GPUs was not large previously, the computing ability of 

display cards has been enhanced recently: not only the 

improvements of computing clock, but also the increasing 

number of GPUs on display cards, which enhances the 

floating-point operations per second. Instead of being 

designed to finish heavy computing tasks within a limited 

number, GPUs are expected to process large amounts of data 

and tasks by parallel computing to improve the system 

performance. Because a large number of GPUs are suitable 

for parallel computing, many supercomputers in the word 

have started to use GPUs to support CPUs for a great deal of 

complicated computing tasks. 

Since the future of computers keep stepping into cloud 

computing, we propose to add the multithreaded GPUs to 

some VMs in the existing cloud-based VM groups. To handle 

the multidimensional array operations or multithreaded 

computing that a CPU cannot process quickly by a GPU that 

has hundreds of ALUs, and to regulate the time for initiating 

physical servers by real-time thermal migration, our proposed 

scheme can estimate whether to compute tasks by GPUs or 

not, enhance the system performance, and reduce the energy 

consumption of long-term computing. 

 

II. RELATED WORKS 

2.1 CPU/GPU Collaborative Computing 

In modern computer science, traditional CPU 

computing has reached a bottleneck while high performance 

computing systems are experiencing a revolution, in which 

novel architectures are presented one after another and the 

combination of multi-core microprocessor and GPU is one of 

the highest potential and prospective method. 

GPU (Graphics Processing Unit) was first presented by 

NVidia in 1999[1]. With the evolution of semiconductor 

industry, the growth of GPU has been exceeding Moore's Law 
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and reached more than 500 gigaflops of double-precision 

floating point operations. As for researches about GPGPU 

(General-Purpose computation on GPU), papers [2-5] have 

specified the history, architecture, software environment and 

several cases of GPU. 

Because of its powerful computational capabilities, high 

cost performance and high performance but low power 

consumption, GPU has received great attention in such an 

eco-friendly era. In addition to traditional graphical 

computing, GPU has been greatly applied to general-purpose 

computing and thus formed GPGPU or General-purpose 

computing on graphics processing units (GP²U). Due to its 

excellent general-purpose computational capabilities, GPU 

has been regarded as the future of computer science since 

2003 [2]. 

CPU and GPU are designed with absolutely different 

goals. The design concept of CPU is to execute instructions 

and operations quickly with low delay and to use a great deal 

of IC for control and temporary storage. On the other hand, 

GPU is designed for graphical computing, in which great 

amounts of IC are used as ALUs for high intensity computing. 

Therefore, by utilizing CPU/GPU collaborative computing, 

we can use CPU for control and buffer and use GPU for 

processing a great deal of computing tasks. 

In the scope of CPU/GPU collaborative computing, 

CUDA (Compute Unified Device Architecture)[5] presented 

by NVidia is currently the leading technique of GPGPU. The 

CUDA is a C-language development environment, in which 

tasks are computed by GPUs after NVidia GeForce 8 together 

with Quadro GPU. Commands in either CUDA C-language or 

OpenCL will be compiled into PTX code by driver programs 

for the display core to compute. 

The latest CUDA-x86 compilers can support traditional 

multi-core CPU architecture and execute all parallel programs 

written by CUDA. Instead of outperforming CPU in all 

computing aspects, GPU only surpasses CPU in matrix 

computing and parallel computing, which are still rarely seen 

in the present program structure. Thus, when a VM of a 

physical server without GPU executes parallel computing, the 

system will estimate the computing cost of GPU servers. 

Supposing the computing amount is not large, we use CPU 

for parallel computing. On the contrary, we will use GPU for 

a great deal of computing amount. 

2.2 GPU Virtualization 

When cloud computing becomes the future of computers, 

how to virtualizes all computer interfaces and optimize the 

computer performance is the goal for all cloud service 

providers. While GPU computing has been integrated into 

new computer structure, traditional virtual structures will be 

challenged. VMware, the leading company in the 

virtualization, has presented some concepts about GPU 

virtualization in [6]. Like traditional virtualization, physical 

GPU is cut into several virtual GPUs and GPU resource is 

managed by a resource manager, which is similar to a VM 

monitor. However, to distribute GPU resource to all VMs 

equally is not exactly the best method, especially when the 

VMs are greatly different. For the diversification of server 

client mode after virtualization, we propose a novel 

distribution method of GPU virtualization together with 

thermal migration to achieve reasonable application of GPU. 

2.3 MapReduce 

[7] proposes to use GPU based on a computing concept 

similar to Hadoop. According to MapReduce, the program is 

first sent to a master node. In the Map phase, the proposed 

scheme divides the program into suitable sizes, distributes the 

tasks equally to worker nodes, and tracks the tasks. After the 

nodes complete the tasks, the worker nodes collect the results 

by Reduce, which can greatly decrease the computing time. 

But, one great restriction of this scheme is that only when the 

computers at all ends belong to the same specification and the 

type specification of CPU and GPU are  the same, can the 

scheme find out α, the performance ratio of a GPU map task 

execution to a CPU map task execution. In addition, this 

scheme does not consider the loading conditions of all worker 

nodes in the virtual environment and the time difference may 

occur to parallel computing under different loading conditions, 

which causes further delay in Reduce. 

 

III. ENHANCING CLOUD-BASED VIRTUAL 

SERVERS BY GPU PARALLEL COMPUTING 

3.1 Integrating GPU into Cloud Server Virtualization 

In the virtualization architecture, because GPU is one of 

the necessities for future computers, GPU virtualization is 

inevitable. According to the basic architecture of VMs and the 

initial ideas about GPU virtualization presented by VMware, 

GPU is virtualized, just like CPU and other computer devices, 

for resource management. As shown in Figure 1, each VM 

has a pass-through GPU to form a channel to stride the 

resource manager for GPU utilization and to establish GPU 

driver for Apps on all kinds of VMs. Moreover, there is 

another channel from the resource manager to Emulation for 

GPU management. 
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Figure 1 GPU virtualization of VMware (Source: VMware) 

Nevertheless, GPU is not suitable for public sharing 

because large number of data transmissions will influence the 

efficiency of GPU computing. Furthermore, in general cloud 

computing applications, only high-performance and 

multithreaded computing, including real-time image 

processing, atmospheric simulation and prediction, 

astrophysics, quantum mechanics, fluid mechanics, etc., can 

make good use of GPU computing. 

General server group GPU coprocessors server group

Cloud server group

Figure 2. Cloud Server Group 

Therefore, we propose to add GPUs to a cloud server 

group and classify the servers into two subgroups: general 

server group that occupy the great majority of the group, and 

GPU coprocessors server group, as displayed in Figure 2. As 

for GPU coprocessors server group, we suggest that a VM 

occupies a GPU at one time to complete one single task 

within the minimum time. Figure 3 shows that only one VM 

controls one GPU at one time. When a VM needs a GPU, the 

VM monitor gives the GPU usage right to the VM and 

completes the computing task by MapReduce within the 

minimum time. Finally, the GPU usage right will be returned 

to the VM hypervisor. 
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Figure 3 Architecture of GPU Virtualization 

By making an improvement of the method presented in 

[8], our proposed scheme aims to achieve balance control but 

the control node does not take charge of all data transmissions 

for fear of causing heavy burdens. In our opinion, the balance 

control node is only responsible for resource management 

while all work nodes have to return CPU loading, GPU 

loading and the current user list to the balance control node. 

Our task scheduling is displayed in Figure 4. First, the 

client sends the task to the cloud server and the master node 

estimates the task. Second, when the program asks for more 

CPU/GPU resource, the master node cuts the task into small 

tasks of the same size. By referring to [7], we can find out the 

performance ratio of a GPU map task execution to a CPU 

map task execution, α. Let  

  
                                  

                                   
        (1) 

 

Then we can get the number of small tasks. Third, 

according to the quantity of tasks, the program requests the 

computing resource from the balance control node, which 

distributes obtainable resource to available work nodes in the 

following step. Based on the available resource, the master 

node determines the optimal task allocation and maps them to 

each work node for computation. Finally, the master node 

reduces the calculation results and informs the control node 

the completion of the task to release computing resource. 
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Figure 4 Task Scheduling 

3.2 Related Parameters 

Related parameters are divided into two kinds. The first 

is the loading condition of the server, which is sent to the 

control node as the index for the master node to request 

computing resource. We define CPU load as: 

          
                           

                       
             (2) 

 

and GPU load as: 

           
                          

                     
              (3) 

 

The resource for the control node to distribute is    90% 

and 0%<  <100%. 

The second kind of parameters are related to small task 

blocks and total calculation time. Let  

 α be the CPU/GPU calculate time rate. 



    be the number of Assigned CPU cores. 

   be the number of Assigned CPU cores. 

 t be the time for 1 GPU core calculate a task. 

        
 

  
   

 

  
 be the task computation time. 

According to Amdahl‘s law, we know that 
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where s denotes the part that is not improved in the 

system, p refers to the improved part in the system, and N 

means the enhance ratio. Next, we will integrate our defined 

parameters with the formula. Because our assumed scenario is 

a cloud-based parallel architecture, in which extra overhead 

must be computed, the formula is revised into: 
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IV. PERFORMANCE SIMULATION AND ANALYSIS 

According to the architecture presented in the previous 

section, we made the following simulation and analysis: 

Assume that the specifications of the cloud servers are the 

same and the operational speed of a single CPU core is five 

times faster than a single GPU core. Each cloud server has 

four CPU cores and two CPU devices (2*128cores). The 

considered overhead include the time for data transmissions 

and MapReduce. Five kinds of program types are taken into 

consideration: 

1. 1%             and 99%                     

2. 5%             and 95%                     

3. 10%             and 90%                     

4. 25%             and 75%                     

5. 50%             and 50%                     

Suppose that all servers are free. 

Figure 5 reveals the parallel system gain according to 

traditional computer based concept. In our simulation, the 

system gain reaches the maximum when the number of nodes 

is unit digit. Also, the more proportion the parallelizable code 

occupies the program, the better the efficiency will be. When 

the parallelizable code occupies 99% of the program, the 

system gain reaches 89 times when there are 3 nodes. 

However, when the parallelizable code occupies 90% of the 

program, the system gain reduces quickly and the maximal 

system gain is 19.5 times when the number of nodes is 3 or 4. 

When the parallelizable code occupies only 50% of the 

program, the gain is only 2 times at most. 

 

 

Figure 5 Theoretical gain of servers 

Next, without considering the execution time for 

collaborative computing, we analyzed the transmission time 

and the execution time for small chunks. Supposing the 

execution time for a 10-megabyte serial code on a CPU is 15 

seconds, 1% of the program, and 990-megabyte parallelizable 

code occupies the rest of the program. It takes 1485 seconds 

to compute the task by CPUs only and 29 seconds by two 

GPUs. But, it takes only 26.9 seconds to complete the task by 

4 CPUs and 2CPUs. 

Table 1 Total Execution Time (1% serial code) 

 serial code                     Total time 

1 CPU 15s 1485s 1500s 

2 GPU 75s 29.01s 104.01s 

1 node 15s 26.9s 41.9s 

2 nodes 15s 13.45s 28.45s 

3 nodes 15s 8.967s 23.967s 

 

In the same way, by using one single CPU to using 1-3 

nodes, we estimate the execution time of different program 

types, as displayed in Figure 6. 

Figure 6 shows that to use CPUs only for computing, all 

kinds of program types can be completed within 1500s. If the 

program code occupies 99%, the task can be completed in 44 

seconds and even 20 seconds with the support of more GPUs. 

However, the more proportion un-parallelized computing 

occupies, the less improvements parallel computing can make. 

Theoretically speaking, with the support of more GPUs, the 

execution time of the parallelizable code should be reduced to 

0. But, more GPUs and more nodes in fact will result in more 

overhead.  

In our proposed scheme, because the server's loading 

condition is considered, few nodes cannot offer enough GPUs 

for parallel support (compared with the above-mentioned 

situation that all servers are free). The maximal gain is 



obtained when there are 15 nodes. But, more nodes will 

decrease the performance due to synchronization and 

transmission. Moreover, when the server is near end, our 

simulation occupies approximately 2 seconds for 

transmission. 

 

Figure 6 Execution time of different program types in GPU 

parallel computing 

 

Figure 7 Server Gain under Load Condition 

V. CONCLUSION AND FUTURE OBJECTIVE 

This paper proposed a scheme to integrate GPU with 

cloud computing for users to utilize high-performance but 

low-cost GPU resource without building devices by 

themselves. However, the biggest limitation of GPU 

computing is the market share of parallel computing, which 

needs to be popularized by future parallel computing service 

providers and developed/adopted by numerous application 

developers. Moreover, the transmission amount of the 

network and the internal bus in the computer is another 

bottleneck of parallel computing. Supposing the transmission 

amount can be further enhanced, a great deal of overhead will 

be reduced and the maximal gain will appear when much 

more nodes are utilized for collaborative computing. 
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